This is a design for digital volume control. This circuit could be used for replacing your manual volume control in a stereo amplifier. This circuit is built from 7555, 74193 and dual 4066 IC. This circuit is a dual channel volume control. This is the figure of the circuit.
IC1 timer 555 is configured as an un-stable flip-flop to provide low-frequency pulses to up/down clock input pins of pre-stable up/down counter 74LS193 (IC2) via push-to-on switches S1 and S2. To vary the pulse width of pulses from IC1, one may replace timing resistor R1 with a variable resistor. Operation of switch S1 (up) causes the binary output to increment while operation of S2 (down) causes the binary output to decrement. The active high outputs A, B, C and D of the counter are used for controlling two quad bi-polar analogue switches in each of the two CD4066 ICs (IC3 and IC4). Each of the output bits, when high, short a part of the resistor network comprising series resistors R6 through R9 for one channel and R10 through R13 for the other channel, and thereby control the output of the audio signals being fed to the inputs of stereo amplifier.
IC1 timer 555 is configured as an un-stable flip-flop to provide low-frequency pulses to up/down clock input pins of pre-stable up/down counter 74LS193 (IC2) via push-to-on switches S1 and S2. To vary the pulse width of pulses from IC1, one may replace timing resistor R1 with a variable resistor. Operation of switch S1 (up) causes the binary output to increment while operation of S2 (down) causes the binary output to decrement. The active high outputs A, B, C and D of the counter are used for controlling two quad bi-polar analogue switches in each of the two CD4066 ICs (IC3 and IC4). Each of the output bits, when high, short a part of the resistor network comprising series resistors R6 through R9 for one channel and R10 through R13 for the other channel, and thereby control the output of the audio signals being fed to the inputs of stereo amplifier.